Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1998 Printed in Austria

1,3,5-Triazin-2,4,6-trisulfenyltrichlorid: Schwingungsspektren und Molekülstruktur

Robert Tripolt* und Edgar Nachbaur

Institut für Anorganische Chemie der Karl-Franzens-Universität Graz, A-8010 Graz, Austria

1,3,5-Triazine-2,4,6-trisulfenyltrichloride: Vibrational Spectra and Molecular Structure

Summary. The IR, FIR, and *Raman* (solution and solid state) spectra of 1,3,5-triazine-2,4,6-trisulfenyltrichloride ((NCSCl)₃) were investigated for the first time. It was possible to identify all fundamentals in the solid state spectra which were assigned on the basis of a planar molecular structure with C_{3h} symmetry. On the other hand, the solution spectra reveal unambiguously the presence of a conformer of lower symmetry (C_s) in equilibrium with the C_{3h} isomer. Calculations employing the density functional theory were performed (B3LYP/6–31G*). A comparative discussion of the vibrational spectra of (NCSCl)₃ (C_{3h}) with respect to those of cyanuric fluoride ((NCF)₃), cyanuric chloride ((NCCl)₃), and cyanuric bromide ((NCBr)₃) reveal a significant dependence of the vibrational situation within the 6-membered heterocyclic ring system on the different substituents in 2,4,6-position. Some modes of 2,4,6-trihalogeno-1,3,5-triazines have been reassigned, *e.g.* the normal mode v_{12} of 2,4,6-trifluoro-1,3,5- triazine.

Keywords. 1,3,5-Triazine-2,4,6-trisulfenyltrichloride; Cyanuric fluoride; Cyanuric chloride; Cyanuric bromide; IR; *Raman*; Molecular structure.

Einleitung

Trotz Vorliegens einer großen Anzahl von schwingungsspektroskopischen Daten für diverse 1,3,5-Triazine [1–8] existieren lediglich für die Stammverbindung dieser Substanzklasse, dem unsubstituierten 1,3,5-Triazin, sowie für die Cyanurhalogenide $(NCX)_3$ (X = F, Cl) eindeutige und durch quantenchemische Rechnungen (3-21 G Basis/Gaussian 90) belegte Bandenzuordnungen [9, 10]. In der vorliegenden Arbeit werden erstmals die IR-, FIR- und Raman-Spektren von 1,3,5-Triazin-2,4,6-trisulfenyltrichlorid ((NCSCl)₃), einem wertvollen Synthon zur einfachen Darstellung von 2,4,6-Trisulfenylderivaten des 1,3,5-Triazins [11], beschrieben. Die Bandenzuordnung erfolgte mit Hilfe der Dichtefunktionaltheorie (DFT) unter Verwendung der B3LYP-Methode (6-31 G*-Basis/Gaussian 94) [12]. Die Rechnung liefert für die beiden möglichen planaren Strukturen für (NCSCl)₃ mit den Symmetrien C_{3h} und C_s (siehe Abb.1) nahezu gleiche Gesamtenergien $(\Delta E < 0.5 \text{ kJ/mol})$. Die Analyse der Schwingungsspektren ergibt, daß in fester Phase das $(NCSCl)_3$ -Molekül in der höher symmetrischen Struktur (C_{3h}) vorliegt. In Lösung ergeben sich jedoch eindeutige Hinweise auf das zusätzliche Auftreten von Molekülen niedrigerer Symmetrie (C_s).

Zum Zweck einer vergleichenden Diskussion des Schwingungsverhaltens von $(NCSCI)_3$ mit anderen symmetrisch substituierten 1,3,5-Triazinen wie den Cyanurhalogeniden $(NCX)_3$ mit X = F, Cl, Br wurden die Erwartungsspektren letzterer Verbindungen ebenfalls mit der B3LYP-Methode berechnet und der unterschiedliche Substituenteneinfluß auf das Schwingungsverhalten des heterocyclischen Ringgerüsts analysiert. Diese Analyse erbrachte Korrekturen der in der Literatur erwähnten Bandenzuordnungen für einzelne Grundschwingungen der vorgenannten Cyanurhalogenide und ergab erstmals ein in sich konsistentes Bild vom Schwingungsverhalten des heterocyclischen Ringgerüstes in 2,4,6-substituierten 1,3,5-Triazinen.

Ergebnisse und Diskussion

Die Festphasen-Schwingungsspektren von (NCSCl)₃ (Abb. 2–4) zeigen für ein Molekül, das aus 12 Atomen zusammengesetzt ist, eine verhältnismäßig geringe Anzahl von Banden. Dies läßt auf eine Molekülstruktur mit hoher Symmetrie schließen. Die B3LYP-Rechnung [12] ergibt für (NCSCl)₃ eine ebene Struktur mit gewinkelten CSCl-Gruppen als energetisch stabilste Variante. Die höchste Symmetrie (C_{3h}) ergibt sich, wenn sämtlich CSCl-Winkel im Molekül gleichsinnig

Abb. 2. IR-Spektrum von (NCSCl)₃ (KBr-Preßling)

ausgerichtet sind (**1** in Abb. 1). Die antisymmetrische Ausrichtung der CSCl-Winkel (**2** in Abb. 1) wäre zwar laut B3LYP-Rechnung energetisch nahezu gleich günstig ($\Delta E < 0.5$ kJ/mol), bedeutet aber für das Molekül eine Symmetrieerniedrigung auf C_s, sodaß auf Grund der Aufhebung jeglicher Entartung im Schwingungsspektrum von **2** deutlich mehr Banden auftreten müßten als in jenem von **1** (siehe Tab. 1).

Dichtefunk	tionaltheor	ie / B3I VP-N	lethode	evn IR-R	anden	exp Ram	an-Banden	7110	rdnung	
C _{3h}	IR-Int. ¹	C _s	IR-Int. ¹	KBr/PE-P	r. Lös. ²	Pulver	Lös. ³	für (C _{3h} -Symmetrie	
						1551 ss				
1550 (E')	100	1550 (A')	100	1475 sst	1487	1477 m	1487	v_8	v(CN I)	\mathbf{E}'
		1545 (A')	93.1							
				1410 m		1412 ss				
				1304 s	1306	1310 s				
1309 (A')	0	1307 (A')	63.8		1278	1272 m	1275 p	v_1	Ringpulsation I	Α'
		1300 (A')	32.2		1261		1261			
1293 (E')	60.0			1245 sst	1251	1247 s	1250	V9	v (CN II)	\mathbf{E}'
		1283 (A')	26.2							
						1238 m				
				1217 sch	1226	1217 ss	1224			
1241 (A')	0	1243 (A')	3.80		1163	1170 s	1164 p	v_2	v (CN)	\mathbf{A}'
		988 (A')	0.23				964 p			
984 (A')	0					957 sst	958 p	v_3	Ringpulsation I	I A'
850 (E')	13.5	850 (A')	13.2	841 st	841	843 m	843	v_{10}	v (CS)	\mathbf{E}'
		850 (A')	14.1							
				796 ss		798 ss				
799 (A'')	1.96	799 (A'')	1.96	774 m	779			<i>v</i> ₁₅	γ (CN)	\mathbf{A}'
		629 (A'')	0							
622 (E'')	0					610 ss		v_{18}	γ (CN)	$E^{\prime\prime}$
		617 (A'')	0							
555 (A')	0	554 (A')	2.41	563 ss	561	565 sst	563 p	<i>v</i> 4	v (SCl)	\mathbf{A}'
		532 (A')	2.68							
528 (E')	7.93	529 (A')	8.33	544 st	548	548 st	548 p	<i>v</i> ₁₁	v (SCl)	\mathbf{E}'
		503 (A')	1.47		505					
492 (A')	0					498 m	496 p	v_5	δ (NCS)	\mathbf{A}'
		468 (A')	0.09		469		469 p			
457 (E')	0.04			457 s	457	458 st	457	v_{12}	δ (Ring)	E'
		393 (A')	0.12		411					
		387 (A')	0.03		393		391 p			
340 (A')	0					343 st	344 p	v_6	v (CS)	\mathbf{A}'
		261 (A')	0.03		270		267 p			
236 (E')	0.12			245 s	243	243 st	243	<i>v</i> ₁₃	δ (NCS)	E'
		189 (A')	0.09				197 p			
169 (E'')	0	165 (A'')	0.01			180 s		v_{19}	γ (CS)	$E^{\prime\prime}$
		165 (A'')	0							
		149 (A')	0.13							
134 (A')	0					154 st		v_7	δ (CSCl)	\mathbf{A}'
131 (A'')	0.04	130 (A'')	0.03	157 ss				v_{16}	γ (CS)	$A^{\prime\prime}$
		90 (A')	0.02							
81 (E')	0.05			99 s				v_{14}	δ (CSCl)	E′
		73 (A')	0.03							
		73 (A'')	0							
61 (E'')	0							v_{20}	γ (SCl)	\mathbf{E}'
		57 (A'')	0.01							
52 (A'')	0.04			66 ss				v_{17}	γ (SCl)	$A^{\prime\prime}$
		43 (A'')	0.02							

Tabelle 1. Berechnetes und beobachtetes Schwingungsspektrum von (NCSCl)₃ (cm⁻¹)

sst: sehr stark, st: stark, m: mittel, s: schwach, ss: sehr schwach, sch: Schulter; ¹Intensitäten relativ zur stärksten Bande in %; ²Lösungen in CH₂Cl₂, C₂Cl₄ und *THF*; ³Lösungen in CH₂Cl₂, C₂Cl₄, *THF* und 1,4-Dioxan

C _{3h} Rasse	IR	Raman	Anzahl der Schwingungen Ringgerüst Gesamt		
A'	ia	р	3	7	
A''	a	ia	1	3	
E'	а	dp	3	7	
E''	ia	dp	1	3	

Tabelle 2. Klassifizierung der Fundamentalschwingungen von (NCSCl)3

a: aktiv, ia: inaktiv, p: polarisiert, dp: depolarisiert

Der Vergleich der Festphasen-IR- und *-Raman*-Spektren von (NCSCl)₃ mit den in Lösung aufgenommenen Spektren zeigt, daß letztere unabhängig vom verwendeten Lösungsmittel zusätzliche Banden aufweisen (siehe Abb. 5 und Tab. 1). Dies deutet auf eine Symmetrieerniedrigung im (NCSCl)₃-Molekül hin, wenn dessen Struktur nicht mehr durch die im Kristall einwirkenden Gitterkräfte fixiert ist. Die energetisch günstigste Möglichkeit für ein freies (NCSCl)₃-Molekül, seine Struktur zu ändern, wäre jene durch Drehung in der C-S-Achse um einen Winkel von 180°C wobei das gebildete Konformer (**2** in Abb. 1) die Symmetrie C_s aufweist. Die niedrigere Symmetrie von **2** würde die Aufhebung jeglicher Entartung zur Folge haben und somit das Auftreten der zusätzlichen Schwingungsbanden erklären.

Wie den Tabellen 1 und 2 zu entnehmen ist, gibt es für die in fester Phase beobachteten Schwingungen eine sehr gute Übereinstimmung zwischen den symmetriebedingten Forderungen und den Meßergebnissen, sodaß die Diskussion des Schwingungsspektrums von (NCSCl)₃ auf Grundlage der C_{3h}-Symmetrie (**1** in Abb. 1) geboten erscheint.

Für die Zuordnung der experimentell beobachteten Banden im Schwingungsspektrum von (NCSCl)₃ mit C_{3h}-Symmetrie wurden die Ergebnisse der B3LYP-Rechnung sowie die schwingungsspektroskopischen Daten der Cyanurhalogenide (NCX)₃ mit X = F, Cl und Br herangezogen. Für (NCCl)₃ und (NCF)₃ konnten mittels Kristallstrukturanalysen zweifelsfrei planare Strukturen (**3** in Abb. 1) mit D_{3h}-Symmetrie nachgewiesen werden [13–17]. Besonders Cyanurchlorid erscheint aufgrund der ähnlichen Atommassen an der Position X für die vergleichende Diskussion mit (NCSCl)₃ prädestiniert, speziell im Hinblick auf das Schwingungsverhalten des Ringgerüstes in den betrachteten Molekülen.

Schwingungen der Rasse A'

Tabelle 2 weist für (NCSCl)₃ 7 Schwingungen in der Molekülebene aus, die zur totalsymmetrischen Rasse A' gehören. Diese lassen sich aufgrund ihrer meist hohen Intensität und ihres Depolarisationsgrades im *Raman*-Spektrum leicht identifizieren. Es handelt sich hierbei um folgende Schwingungen: Ringpulsation I (v_1), CN-Valenz (v_2), Ringpulsation II (v_3), SCl-Valenz (v_4), NCS-Deformation (v_5), CS-Valenz (v_6) und CSCl-Deformation (v_7).

Bei den Cyanurhalogeniden gibt es aufgrund der höheren Molekülsymmetrie (D_{3h}) nur drei totalsymmetrische Schwingungen (Rasse A₁'). In Tabelle 3 werden

Abb. 6. Fundamentalschwingungen von (NCSCl)₃ in der Rasse A'

	Ringpulsation I		Ringpulsation II		CX-Valenz	
	beob.	B3LYP	beob.	B3LYP	beob.	B3LYP
(NCSCl) ₃	1272	1309	957	984	343	340
(NCBr) ₃ [8]	1238	1236	975	987	245	239
(NCCl) ₃	1297	1288	975	989	407	399
(NCF) ₃	1496	1540	999	1005	642	645

Tabelle 3. Beobachtete und berechnete Bandenlagen totalsymmetrischer Schwingungen von $(NCSCl)_3$ und Cyanurhalogeniden (cm^{-1})

diese mit den entsprechenden Schwingungen von $(NCSCl)_3$ (Rasse A') sowie den jeweils berechneten Werten verglichen.

Die in Tabelle 3 getroffene Zuordnung der Ringpulsation I zur jeweils höchsten beobachteten Frequenz dieser Rasse steht im Fall der Cyanurhalogenide oftmals im Widerspruch zu früheren Literaturangaben [4, 8, 18], in denen die CX-Valenzschwingung der jeweils höchsten Wellenzahl zugeordnet wird. Grund für die von uns vorgenommene Änderung der Zuordnung ist das Ergebnis der Normalkoordinatenanalyse für Cyanurchlorid von *Navarro et al.* [10], nach dem die C-Cl-Auslenkung lediglich mit 33% an der potentiellen Energie der Schwingung bei 1297 cm⁻¹, jedoch zu 81% an der Schwingung bei 407 cm⁻¹ beteiligt ist. Aufgrund des sehr ähnlichen Schwingungsverhaltens der Moleküle (NCSCl)₃ und (NCCl)₃ können analoge Energieverteilungen auch für das Sulfenylchlorid angenommen werden.

Das Cyanurfluorid stellt in dieser Hinsicht einen Sonderfall dar, da ein CF-Valenzschwingungsanteil sowohl in der Bande bei 1496 cm⁻¹ (51%) als auch in der Bande bei 642 cm⁻¹ (63%) enthalten ist [10]. Die Zuordnung einer charakteristischen CF-Valenzschwingung ist somit für (NCF)₃ nicht möglich. Damit erklären sich auch die ungewöhnlich großen Verschiebungen der Bandenlagen im Vergleich zu denen der übrigen in Tabelle 3 angeführten Verbindungen. Das außergewöhnliche Kopplungsgeschehen in (NCF)₃ dürfte in der höheren Kraftkonstante der CF-Bindung und dem geringen Massenunterschied

	CN-Valenz		NCX-Deformation		
	beob.	B3LYP	beob.	B3LYP	
(NCSCl) ₃	1170	1241	498	492	
(NCBr) ₃ [8]	ia	1176	ia	440	
(NCCl) ₃	ia ¹	1227	ia ¹	506	
(NCF) ₃	ia	1300	ia	669	

Tabelle 4. Beobachtete und berechnete Bandenlagen der symmetrischen CN-Valenz- und der symmetrischen NCX-Deformationsschwingung von (NCSCl)₃ und (NCX)₃ (cm⁻¹)

ia: inaktiv; ¹mittels INS (inelastic neutron scattering) wurden für Cyanurchlorid Banden bei 1156 und 503 cm⁻¹ beobachtet [18]

von Fluor zu den Ringatomen begründet sein. Ist der Massenunterschied zwischen Ring- und Substituentenatomen sehr groß, wie z.B. im 1, 3, 5-Triazin, treten Kopplungsphänomene kaum in Erscheinung [9].

Zwei weitere symmetrische Schwingungen in der Molekülebene, nämlich die CN-Valenz (v_2) und die NCX-Deformation (v_5), gehören im Fall der Cyanurhalogenide zur Rasse A'₂ und sind somit weder IR-noch *Raman*-aktiv. In Tabelle 4 werden die jeweilig berechneten Bandenlagen für (NCX)₃ den beobachteten und berechneten Werten für (NCSCl)₃ gegenübergestellt. Für Cyanurchlorid wurden mittels inelastischer Neutronenstreuung (INS) Banden bei 1156 und 503 cm⁻¹ gefunden [18], deren Lagen mit jenen der für (NCSCl)₃ gefundenen Banden sehr gut im Einklang stehen.

Schwingungen der Rasse E'

 $(NCSCl)_3$ besitzt 7 asymmetrische Schwingungen in der Molekülebene, die sowohl IR- als auch *Raman*-aktiv sind. Zu ihnen zählen zwei Schwingungen mit überwiegend CN-Valenzcharakter (v_8 , v_9), CS-Valenz (v_{10}), SCI-Valenz (v_{11}), Ringdeformation (v_{12}), NCS-Deformation (v_{13}) und CSCI-Deformation (v_{14}).

Bezugnehmend auf die Normalkoordinatenanalyse für $(NCCl)_3$ [10] folgt, daß für v_{10} eine deutliche Kopplung der CS-Valenzschwingung mit der Ring-

Abb. 7. Fundamentalschwingungen von $(NCSCl)_3$ in der Rasse E'

	CN-Valenz I		CN-Valenz	z II	CX-Valenz	
	beob.	B3LYP	beob.	B3LYP	beob.	B3LYP
(NCSCl) ₃	1475	1550	1245	1293	841	850
(NCBr) ₃ [8]	1465	1516	1255	1267	799	798
(NCCl) ₃	1505	1550	1262	1301	850	860
(NCF) ₃	1617	1636	1424	1464	1087	1113
		Ringdeformat	tion		NCX-Deform	ation
		beob.	B3LYP		beob.	B3LYP
(NCSCl) ₃		457	457		245	236
(NCBr) ₃ [8]		378	363		139 ¹	127
(NCCl) ₃		474	463		216	209
(NCF) ₃		578	580		379	381

Tabelle 5. Beobachtete und berechnete Bandenlagen asymmetrischer Schwingungen in der Molekülebene von $(NCSCl)_3$ und Cyanurhalogeniden (cm^{-1})

¹Geänderter Wert aufgrund der Neuzuordnung basierend auf den Rechenergebnissen

deformationsschwingung zu erwarten ist, sodaß die getroffene Zuordnung in diesem Fall nur als näherungsweise zu verstehen ist.

Die B3LYP-Rechnung für (NCBr)₃ ergibt für die tiefstliegende Schwingung der Rasse E' eine Bandenlage von 127 cm⁻¹, die im deutlichen Widerspruch zu der in [8] angeführten Wellenzahl (166 cm⁻¹) steht. Die Zuordnung der im *Raman*-Spektrum von (NCBr)₃ bei 139 cm⁻¹ auftretenden Bande zur Rasse E' und gleichzeitige Zuordnung der Bande bei 166 cm⁻¹ zur Rasse E'' behebt diesen Widerspruch und steht auch mit den gemessenen Bandenintensitäten im Einklang.

Die in Tabelle 5 nicht angeführten Schwingungen v_{11} (SCI-Valenz) und v_{14} (CSCI-Deformation) liegen mit 544 cm⁻¹ und 99 cm⁻¹ in für Sulfenylchloride typischen Bereichen [19, 20].

Schwingungen der Rasse A"

(NCSCl)₃ besitzt drei nichtebene symmetrische Schwingungen der Rasse A". Zu diesen nur IR-aktiven Schwingungen zählen: γ -CN-Schwingung (v_{15}), γ -CS-Schwingung (v_{16}) und γ -SCl-Schwingung (v_{17}).

Die γ -CN-Schwingung (v_{15}) bei 774 cm⁻¹ verursacht im IR-Spektrum die intensivste Bande dieser Rasse und ist, wie der Vergleich mit der entsprechenden Bande diverser Cyanurhalogenide (Tabelle 6) zeigt, sehr lagekonstant. *Allenstein*

Abb. 8. Fundamentalschwingungen von (NCSCl)₃ in der Rasse A''

	γ -CN-Schw	ringung	γ -CX-Schwingung		
	beob.	B3LYP	beob.	B3LYP	
(NCSCl) ₃	774	799	157	131	
(NCBr) ₃ [8]	785	807	k.A.	105	
(NCCl) ₃	792	811	156	138	
(NCF) ₃	817	822	226	218	

Tabelle 6. Beobachtete und berechnete Bandenlagen nichtebener symmetrischer Schwingungen von $(NCSCl)_3$ und Cyanurhalogeniden (cm^{-1})

k.A: keine Angaben

et al. bezeichnete aus diesem Grund diese nichtebene symmetrische Ringdeformation als charakteristische Schwingung aromatischer Sechsringmoleküle [8].

Der Vergleich der Bandenlage der γ -CX-Schwingung von (NCSCl)₃ (v_{16}) mit (NCCl)₃ ergibt mit Wellenzahlen von 157 bzw. 156 cm⁻¹ eine erstaunlich gute Übereinstimmung. *Griffith* und *Irish* geben für die entsprechende Bande von (NCF)₃ eine experimentell bestimmte Lage von 436 cm⁻¹ an [1]. Dies steht im krassen Widerspruch zu den Ergebnissen der B3LYP-Rechnung (218 cm⁻¹) sowie zu der von *Navarro et al.* durchgeführten *ab initio*-Rechnung [10], die für diese Schwingung die Bandenlage 208 cm⁻¹ ergab. Um diese Diskrepanz abzuklären, wurde von uns das FIR-Spektrum von (NCF)₃ neuerlich aufgenommen. Das Spektrum zeigt neben der bereits erwähnten Bande bei 436 cm⁻¹ eine deutlich intensivere und bisher unerwähnte Bande bei 226 cm⁻¹. Diese Beobachtung erfordert unter Berücksichtigung der Rechenergebnisse zwingend die Zuordnung der symmetrischen γ -CF-Schwingung von Cyanurfluorid zu dieser Bande.

Schwingungen der Rasse E"

(NCSCl)₃ besitzt drei nichtebene asymmetrische Schwingungen der Rasse E''. Zu diesen nur *Raman*-aktiven Schwingungen gehören: γ -CN-Schwingung (v_{18}), γ -CS-Schwingung (v_{19}) und γ -SCl-Schwingung (v_{20}).

Während sich die nichtebene symmetrische Ringdeformationsschwingung für die betrachteten Moleküle durch hohe Lagekonstanz auszeichnet (Tabelle 6), findet man im Falle der asymmetrischen γ -CN-Schwingung eine merkliche Abhängigkeit der Bandenlage von der Art des jeweiligen Substituenten am Sechsring (Tabelle 7). In diesem Zusammenhang überrascht die relativ tiefe Lage der entsprechenden Bande von Cyanurbromid bei 456 cm⁻¹ [8]. Es wäre zu prüfen, ob diese

 $v_{18}: 610 \text{ cm}^{-1}$

v₁₉: 180 cm

ν₂₀: 61 cm⁻¹ (berechnet)

Abb. 9. Fundamentalschwingungen von (NCSCl)₃ in der Rasse E''

	γ -CN- / γ -C	CX-Schwingung	γ -CX- / γ -CN-Schwingung		
	beob.	B3LYP	beob.	B3LYP	
(NCSCl) ₃	610	622	180	169	
(NCBr) ₃ [8]	620^{1}	624	166 ¹	151	
(NCCl) ₃	647	656	175	166	
(NCF) ₃	744	744	223	208	

Tabelle 7. Beobachtete und berechnete Bandenlagen nichtebener asymmetrischer Schwingungen von $(NCSCl)_3$ und Cyanurhalogeniden (cm^{-1})

¹Geänderter Wert aufgrund der Neuzuordnung basierend auf den Rechenergebnissen

Zuordnung tatsächlich korrekt ist, zumal die B3LYP-Rechnung für diese IRinaktive Schwingung die Wellenzahl 624 cm^{-1} ergibt und im *Raman*-Spektrum, nicht jedoch im IR-Spektrum, eine Bande bei 620 cm^{-1} registriert wurde [8].

Die B3LYP-Rechenergebnisse (Schwingungsbilder) zeigen für die Schwingungen dieser Rasse eine besonders ausgeprägte Kopplung, sodaß eine eindeutige Zuordnung hier nicht sinnvoll erscheint. Damit entspricht auch die von *Griffiths* und *Irish* [1] für (NCF)₃ vorgenommene Zuordnung nicht dem tatsächlichen Schwingungsgeschehen.

Für v_{20} von (NCSCl)₃ ergibt die B3LYP-Rechnung die Wellenzahl 61 cm⁻¹. Die entsprechende Bande konnte von uns aus experimentellen Gründen nicht beobachtet werden.

Experimentelles

 $(NCSCl)_3$ wurde durch Photochlorierung von Trithiocyanursäure ((HNCS)₃) hergestellt [21] und durch mehrmalige Vakuumsublimation (105 °C / 2.5 Pa) gereinigt. Die im Handel erhältlichen Verbindungen Cyanurfluorid und Cyanurchlorid wurden mittels literaturbekannter Methoden gereinigt [1, 4].

Im Bereich von 400–4000 cm⁻¹ wurden die IR-Spektren mit einem Perkin-Elmer IR-Spektrometer 882 in Dichlormethan, in Tetrachlorethen, Tetrahydrofuran und als KBr-Preßling aufgenommen. Im Bereich von 50–650 cm⁻¹ wurden die IR-Spektren mit einem Nicolet 20F FIR Vakuum-Spektrometer in Tetrahydrofuran und als Polyethylenpreßling bzw. mit einer PE-Küvette (Cyanurfluorid) vermessen.

Die *Raman*-Spektren wurden mit einem Nicolet FT-*Raman*-Spektrometer Typ *Raman* 910 (Nd:YAG Laser, Erregerlinie 1064 nm) im Bereich von 130–3200 cm⁻¹ aufgenommen. Für die Lösungsspektren wurden die oben genannten Lösungsmittel sowie, 1,4-Dioxan verwendet.

Literatur

- [1] Griffiths JE, Irish DE (1964) Can J Chem 42: 690
- [2] Fleming PE, Mathews CW (1992) J Mol Spectrosc 152: 317
- [3] Sawodny W, Niedenzu K, Hynes JB, Dawson JW (1967) Spectrochim Acta 23A: 1327
- [4] Thomas DM, Bates JB, Bandy A, Lippincott ER (1970) J Chem Phys 53: 3698
- [5] Wilson HW (1973) J Chem Phys 58: 2663
- [6] Padgett Jr WM, Hamner WF (1958) J Am Chem Soc 80: 803

Spektren und Struktur von (NCSCl)3

- [7] Heckle WA, Ory HA, Talbert JM (1961) Spectrochim Acta 17: 600
- [8] Allenstein E, Kiemle P, Schlipf E, Podszun W (1978) Spectrochim Acta 34A: 423
- [9] Lancaster JE, Stamm RF, Colthup NB (1961) Spectrochim Acta 17: 155
- [10] Navarro A, Lopez Gonzalez JJ, Fernandez Gomez M, Marquez F, Otero JC (1996) J Mol Struct 376: 353
- [11] Tripolt R (1991) Dissertation, Karl-Franzens-Universitát Graz
- [12] GAUSSIAN 94, Revision C.3, Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian, Inc. Pittsburgh, PA
- [13] Pascal Jr RA, Ho DM (1992) Tetrahedron Lett 33: 4707
- [14] Chen SJ, Behrens U, Fischer E, Mews R, Pauer F, Sheldrick GM, Stalke D, Stohrer WD (1993) Chem Ber 1993: 2601
- [15] Maginn SJ, Compton RG, Harding MS, Brennan CM, Docherty R (1993) Tetrahedron Lett 34: 4349
- [16] Xu K, Ho DM, Pascal Jr RA (1994) J Am Chem Soc 1994: 105
- [17] Chen SJ, Behrens U, Olbrich F, Mews R (1993) Z anorg allg Chem 619: 1725
- [18] Navarro A, Lopez Gonzalez JJ, Kearley GJ, Tomkinson J, Parker SF, Sivia DS (1995) Chem Phys 200: 395
- [19] Oberhammer H, Gombler W, Willner H (1981) J Mol Struct 70: 273
- [20] Bielefeldt D, Willner H (1980) Spectrochim Acta 36A: 989
- [21] Nachbaur E (1981) AT 361, 935; CA 95: 81029c

Received August 7, 1997. Accepted (revised) October 2, 1997